Part Number Hot Search : 
MAX1544 10PBF 1612A 16IDE3 SHD11 90000 IDT54 AD8184AR
Product Description
Full Text Search
 

To Download IRF1404ZGPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.irf.com 1 hexfet ? power mosfet v dss = 40v r ds(on) = 3.7m ? i d = 75a this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g description  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free  halogen-free features IRF1404ZGPBF to-220ab IRF1404ZGPBF absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (packa g e limited) i dm p u l se d d ra i n c urren t p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source volta g e v e as (thermally limited) si n gl e p u l se a va l anc h e e ner gy  mj e as (tested ) si n gl e p u l se a va l anc h e e ner gy t es t e d v a l ue  i ar a va l anc h e c urren t  a e ar r epe titi ve a va l anc h e e ner gy  mj t j operatin g junction and t stg stora g e temperature ran g e c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw  thermal resistance parameter typ. max. units r jc junction-to-case CCC 0.65 r cs case-to-sink, flat greased surface  0.50 CCC r ja junction-to-ambient  CCC 62 480 320 see fig.12a, 12b, 15, 16 220 1.5 20 max. 190 130 750 75 c/w -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) pd - 96236a downloaded from: http:///

 2 www.irf.com electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 CCC CCC v ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.033 CCC v/c r ds(on) static drain-to-source on-resistance CCC 2.7 3.7 m ? v gs(th) gate threshold voltage 2.0 CCC 4.0 v gfs forward transconductance 170 CCC CCC v i dss drain-to-source leakage current CCC CCC 20 a CCC CCC 250 i gss gate-to-source forward leakage CCC CCC 200 na gate-to-source reverse leakage CCC CCC -200 q g total gate charge CCC 100 150 q gs gate-to-source charge CCC 31 CCC nc q gd gate-to-drain ("miller") charge CCC 42 CCC t d(on) turn-on delay time CCC 18 CCC t r rise time CCC 110 CCC t d(off) turn-off delay time CCC 36 CCC ns t f fall time CCC 58 CCC l d internal drain inductance CCC 4.5 CCC between lead, nh 6mm (0.25in.) l s internal source inductance CCC 7.5 CCC from package and center of die contact c iss input capacitance CCC 4340 CCC c oss output capacitance CCC 1030 CCC c rss reverse transfer capacitance CCC 550 CCC pf c oss output capacitance CCC 3300 CCC c oss output capacitance CCC 920 CCC c oss eff. effective output capacitance CCC 1350 CCC source-drain ratin g s and characteristics parameter min. typ. max. units i s continuous source current CCC CCC 75 (body diode) a i sm pulsed source current CCC CCC 750 (body diode)  v sd diode forward voltage CCC CCC 1.3 v t rr reverse recovery time CCC 28 42 ns q rr reverse recovery charge CCC 34 51 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v ds = 25v, i d = 75a i d = 75a v ds = 32v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v mosfet symbol showing the integral reverse p-n junction diode. t j = 25c, i s = 75a, v gs = 0v  t j = 25c, i f = 75a, v dd = 20v di/dt = 100a/ s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 75a  v ds = v gs , i d = 250a v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 32v, ? = 1.0mhz v gs = 0v, v ds = 0v to 32v  v gs = 10v  v dd = 20v i d = 75a r g = 3.0 ? downloaded from: http:///

 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 25c    


 
    
  0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 175c    


 
    
  0 40 80 120 160 i d, drain-to-source current (a) 0 40 80 120 160 200 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 15v 20s pulse width 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 15v 20s pulse width downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v vds= 20v i d = 75a 0.2 0.6 1.0 1.4 1.8 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 1000 v ds , drain-tosource voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec downloaded from: http:///

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 40 80 120 160 200 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 75a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc downloaded from: http:///

 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j )       -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a downloaded from: http:///

 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 10000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 75a downloaded from: http:///

 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets  !" ? #$!"  ? !%"  ? #"&'"$!"  " ()" p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ? !*+!%%"!,-  ? *" )"."  /  ? $  %%"!,011 ?  /  2"*"/!""    v ds 90%10% v gs t d(on) t r t d(off) t f   % "3!4 1 5 0 0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms downloaded from: http:///

 www.irf.com 9 

  
      
   notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 10 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2010 to-220ab package is not recommended for surface mount application.   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.11mh r g = 25 ? , i as = 75a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . 
  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.   this value determined from sample failure population. 100% tested to this value in production.  this is only applied to to-220ab pakcage. 

  
 e xample: t his is an irf b 4310gpb f note: "p" in as s embly line pos ition i ndi cates "l ead - f r ee" int ernat ional part number rectifier lot code as s e mb l y logo y= las t digit of dat e code : ww= wor k we e k x= factory code note: "g" s uffix in part number i ndi cates "h al ogen - f r ee" cal e ndar y e ar notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF1404ZGPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X